Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica.
نویسندگان
چکیده
Aquaporins (AQPs) are water channel proteins facilitating movement of water across the cell membrane. Recent insect studies clearly demonstrate that AQPs are indispensable for cellular water management under normal conditions as well as under stress conditions including dehydration and cold. In the present study we cloned an AQP cDNA from the Antarctic midge Belgica antarctica (Diptera, Chironomidae) and investigated water transport activity of the AQP protein and transcriptional regulation of the gene in response to dehydration and rehydration. The nucleotide sequence and deduced amino acid sequence of the cDNA showed high similarity to AQPs in other insects and also showed characteristic features of orthodox AQPs. Phylogenetic analysis revealed that Belgica AQP is a homolog of dehydration-inducible AQP of another chironomid, Polypedilum vanderplanki. A swelling assay using a Xenopus oocyte expression system verified that Belgica AQP is capable of transporting water, but not glycerol or urea. The AQP mRNA was detected in various organs under non-stressed conditions, suggesting that this AQP plays a fundamental role in cell physiology. In contrast to our expectation, AQP transcriptional expression was not affected by either dehydration or rehydration.
منابع مشابه
Function and immuno-localization of aquaporins in the Antarctic midge Belgica antarctica.
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercur...
متن کاملGenome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula
Background In the Antarctic, only two species of Chironomidae occur naturally-the wingless midge, Belgica antarctica , and the winged midge, Parochlus steinenii . B. antarctica is an extremophile with unusual adaptations. The larvae of B. antarctica are desiccation- and freeze-tolerant and the adults are wingless. Recently, the compact genome of B. antarctica was reported and it is the first An...
متن کاملMechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica.
The Antarctic midge, Belgica antarctica, is exposed to frequent periods of dehydration during its prolonged larval development in the cold and dry Antarctic environment. In this study, we determined the water requirements of the larvae and the mechanisms it exploits to reduce the stress of drying. Larvae lost water at an exceptionally high rate (>10%/h) and tolerated losing a high portion (>70%...
متن کاملCompact genome of the Antarctic midge is likely an adaptation to an extreme environment
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarcti...
متن کاملHigh resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins.
Intense ultraviolet radiation, coupled with frequent bouts of freezing-thawing and anoxia, have the potential to generate high levels of oxidative stress in Antarctic organisms. In this study, we examined mechanisms used by the Antarctic midge, Belgica antarctica, to counter oxidative stress. We cloned genes encoding two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (Cat), an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of insect physiology
دوره 57 8 شماره
صفحات -
تاریخ انتشار 2011